A CORC ® cable insert solenoid: the first high-temperature superconducting insert magnet tested at currents exceeding 4 kA in 14 T background magnetic field

2020 
The results presented in this Letter describe the successful test of the first high-temperature superconducting multi-tesla insert solenoid tested at currents exceeding 4 kA while operating in a background magnetic field of a low-temperature superconducting outsert magnet. A 45-turn insert solenoid, wound from 19 meters of CORC® cable, was designed to operate at high current, high current density, and high hoop stress in high magnetic background field; a combination that is essential in the development of low-inductance, high-field magnets. The CORC® cable insert solenoid was successfully tested in liquid helium in background magnetic fields of up to 14 T, resulting in a combined central magnetic field of 15.86 T and a peak magnetic field on the conductor of 16.77 T at a critical current of 4,404 A, a winding current density of 169 A/mm2, an engineering current density of 282 A/mm2, and a JBr source stress of 275 MPa. Stable operation of the CORC® cable insert magnet in its superconducting transition was demonstrated, during charging at rates of 20 – 50 A/s, without inducing a quench. The results are a clear demonstration of the major benefits of this multi-tape CORC® magnet conductor in which current sharing between tapes is possible, thereby removing some of the stringent conductor requirements of single-tape magnets. The CORC® cable insert solenoid demonstrated operation at about 86 % of the expected CORC® cable performance and showed no significant degradation after 16 high-current test cycles in background fields ranging from 10 to 14 T. CORC® cables have matured into practical and reliable high-field magnet conductors, achieving important high current, high current density, stress tolerance, and quench protection milestones for high field magnet technology. They have established a straightforward path towards low-inductance magnets that operate at magnetic fields exceeding 20 T.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    17
    Citations
    NaN
    KQI
    []