Numerical investigation of viscous fingering in Hele-Shaw cell with spatially periodic variation of depth

2016 
Viscous fingering in a modified Hele-Shaw cell is numerically investigated.The cell allows periodic variation of depth in the lateral direction. The wavenumber n of the depth perturbation has great influence on fingering patterns. For n = 1, the fingering pattern due to the interface instability remains the same as that in the conventional Hele-Shaw cell, while the depth variation causes the steady finger to be a little narrower. For n = 2, four different fingering patterns are captured, similar to the available experimental observations in a modified Hele-Shaw cell containing a centered step-like occlusion. It is found that new fingering patterns appear as n further increases, among which, two patterns with spatial oscillation along both edges of the finger are particularly interesting.One is a symmetric oscillatory finger for n = 3, and the other is an asymmetric one for n = 4. The influence of capillary number on fingering patterns is studied for n = 3 and 4.We find that spatial oscillation of the finger nearly ceases at moderate capillary numbers and occurs again as the capillary number increases further. Meanwhile, the wide finger shifts to the narrow one. It is accompanied by a sudden decrease in the finger width which otherwise decreases continuously as the capillary number increases. The wavenumber and the amplitude of depth perturbation have little effect on the finger width.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []