HR-MAS NMR reveals a pH-dependent LPS alteration by de-O-acetylation at abequose in the O-antigen of Salmonella enterica serovar Typhimurium

2013 
NMR spectroscopy can detect biomolecules like lipopolysaccharide directly on the surface of the cell, thus avoiding isolation and purification, and providing a more realistic description than the one derived from in vitro studies. Here we present a high-resolution magic-angle spinning NMR study of the O-antigen of Salmonella enterica serovar Typhimurium (S. Typhimurium) performed directly on the cells showing the alteration of its acetylation state over time. The O-antigen region of S. Typhimurium consists of the repeating unit [→2)-α-d-Manp-(1→4)-α-l-Rhap-(1→3)-α-d-Galp-(1→] where Man stands for mannose, Rha for rhamnose, and Gal for galactose. Man is substituted with abequose (Abe) O-acetylated at carbon 2. Our studies revealed that the appearance of de-O-acetylated O-antigen in the stationary growth phase is due to the de-O-acetylation of already synthesized O-acetylated O-antigen and that this reaction is caused by the metabolism-induced basic pH of the growth medium. The labile O-acetylation of the O-antigen we observed in S. Typhimurium generates non-stoichiometric O-acetylation states and therefore changes the nature of an immunogenic epitope.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    11
    Citations
    NaN
    KQI
    []