Lipid nanoparticles fuse with cell membranes of immune cells at low temperatures leading to the loss of transfection activity.

2020 
Abstract Delivering nucleic acid using a non-viral vector is a potent strategy for gene modification and controlling gene expression in immune cell therapy. Since the low-temperature storage (0∼4°C) or cryopreservation of cells are indispensable for performing immune cell therapy, we investigated the interactions between an siRNA-loaded lipid nanoparticle (LNP), a multifunctional envelope-type nanodevice (MEND) containing YSK12-C4 (YSK12-MEND), and human immune cell lines (NK-92 and Jurkat) at low-temperature and its effect on transfection activity. The YSK12-MEND readily bound to the cell membrane of NK-92 cells at low-temperature, but no internalization of the YSK12-MEND by cells was observed, even after returning the temperature to 37°C. Gene silencing activity was completely impaired. The cause of this inhibition appears to be membrane fusion between the YSK12-MEND and cell membrane at the low-temperature. Collectively, our results suggest that the exposure of siRNA-loaded LNPs to cells at low-temperature should be avoided in defining transfection protocols in immune cell therapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    4
    Citations
    NaN
    KQI
    []