Room temperature extrusion 3D printing of polyether ether ketone using a stimuli-responsive binder

2019 
Abstract We report our efforts toward 3D printing of polyether ether ketone (PEEK) at room temperature by direct-ink write technology. The room-temperature extrusion printing method was enabled by a unique formulation comprised of commercial PEEK powder, soluble epoxy-functionalized PEEK (ePEEK), and fenchone. This combination formed a Bingham plastic that could be extruded using a readily available direct-ink write printer. The initial green body specimens were strong enough to be manipulated manually after drying. After printing, thermal processing at 230 °C resulted in crosslinking of the ePEEK components to form a stabilizing network throughout the specimen, which helped to preclude distortion and cracking upon sintering. A final sintering stage was conducted at 380 °C. The final parts were found to have excellent thermal stability and solvent resistance. The Tg of the product specimens was found to be 158 °C, which is 13 °C higher than commercial PEEK as measured by DSC. Moreover, the thermal decomposition temperature was found to be 528 °C, which compares well against commercial molded PEEK samples. Chemical resistance in trifluoroacetic acid and 8 common organic solvents, including CH2Cl2 and toluene, were also investigated and no signs of degradation or weight changes were observed from parts submerged for 1 week in each solvent. Test specimens also displayed desirable mechanical properties, such as a Young’s modulus of 2.5 GPa, which corresponds to 63% of that of commercial PEEK (reported to be 4.0 GPa).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    8
    Citations
    NaN
    KQI
    []