Presence of a resident species aids invader evolution

2020 
Phytoplankton populations are intrinsically large and genetically variable, and interactions between species in these populations shape their physiological and evolutionary responses. Yet, evolutionary responses of microbial organisms in novel environments are investigated almost exclusively through the lens of species colonising new environments on their own, and invasion studies are often of short duration. Although exceptions exist, neither type of study usually measures ecologically relevant traits beyond growth rates. Here, we experimentally evolved populations of fresh- and seawater phytoplankton as monocultures (the green algae Chlamydomonas moewusii and Ostreococcus tauri, each colonising a novel, unoccupied salinity) and co-cultures (invading a novel salinity occupied by a resident species) for 200 generations. Colonisers and invaders differed in extinction risks, phenotypes (e.g. size, primary production rates) and strength of local adaptation: invaders had systematically lower extinction rates and broader salinity and temperature preferences than colonisers, regardless of the environment that the invader originated from. We emphasise that the presence of a locally adapted species has the potential to alter the invading species eco-evolutionary trajectories in a replicable way across environments of differing quality, and that the evolution of small cell size and high ROS tolerance may explain high invader fitness. To predict phytoplankton responses in a changing world, such interspecific relationships need to be accounted for.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    0
    Citations
    NaN
    KQI
    []