Hexagonal Mesoporous Silica-Supported Copper Oxide (CuO/HMS) Catalyst: Synthesis of Primary Amides from Aldehydes in Aqueous Medium

2017 
Hexagonal mesoporous silica (HMS)-supported copper oxides (CuO/HMS) have been prepared by a sol–gel method and characterized by X-ray diffraction, FTIR spectroscopy, transmission electron microscopy, N2 sorption, inductively coupled plasma (ICP), X-ray photoelectron spectroscopy (XPS), H2 temperature-programed reduction (TPR), NH3 temperature-programed desorption (TPD), and high-resolution (HR)-TEM techniques. An analysis of these results revealed a mesoporous material system with a high surface area (974 m2 g−1) and uniform pore-size distribution. The catalytic efficacy of CuO on the HMS support with varying Cu loadings (1, 3, 5, 10, and 15 wt %) was investigated for the transformation of aldehydes to primary amides; 3 wt % CuO/HMS exhibited good catalytic performance with good to excellent yields of amides (60–92 %) in benign aqueous medium. The intrinsically heterogeneous catalyst could be recovered after the reaction and reused without any noticeable loss in activity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    18
    Citations
    NaN
    KQI
    []