Digital Human-in-the-Loop Methodology for Early Design Computational Human Factors

2021 
Numerous computational strategies were introduced in the past decades to integrate human aspects into the design process; perhaps, none provided a broader product design capacity equal to Digital Human Modeling (DHM) research. The popularity of DHM usage in product development is increasing, and many companies take advantage of DHM in their virtual prototyping studies. However, DHM is usually interpreted as a post-conceptualization check gate methodology and is often applied to correct ergonomics assumptions. Although this approach provides some insight into product performance, designers often miss more widespread opportunities in terms of utilizing DHM as an early design stage design tool. This research presents our ongoing efforts in developing DHM-based early design computational Human Factors Engineering (HFE) support tools. We engage this reflection by summarizing two early design frameworks emerging from our recent work: (1) Prototyping Toolbox and (2) Human Error and Functional Failure Reasoning (HEFFR). These frameworks are originated from the Digital Human-in-the-loop (DHIL) methodology. DHIL proposes a simulation-based computational design methodology that builds a bridge between existing Computer-Aided Engineering (CAE) software packages and computational HFE tools to address safety, comfort, and performance-related issues early in design. Our primary focus in this paper is to demonstrate the frameworks emerging from our recent D-HIL research to promote better early design decision-making for human-centered product design.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []