A photoswitchable GPCR-based opsin for presynaptic silencing

2021 
Optical manipulations of genetically defined cell types have generated significant insights into the dynamics of neural circuits. While optogenetic activation has been relatively straightforward, rapid and reversible synaptic inhibition has been far more difficult to achieve. Instead of relying on unpredictable ion manipulations or slow photoactivatable toxins at axon terminals, we took a different approach to leverage the natural ability of inhibitory presynaptic GPCRs to silence synaptic transmission. Here we characterize parapinopsin (PPO), a photoswitchable non-visual opsin from lamprey pineal gland that couples to Gi/o-signaling cascades. PPO can be rapidly activated by pulsed blue light, switched off with amber light, and is effective for repeated or prolonged inhibition. We developed viral vectors for cell-specific expression of PPO, which traffics very effectively in numerous neuron types. At presynaptic terminals, PPO can silence glutamate release and suppress dopamine-dependent reward and cocaine place preference behaviors in vivo. PPO immediately fills a significant gap in the neuroscience toolkit for rapid and reversible synaptic inhibition, and has broader utility for achieving spatiotemporal control of inhibitory GPCR signaling cascades in other biological and pharmacological applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    114
    References
    0
    Citations
    NaN
    KQI
    []