Inositol polyphosphate multikinase signaling in the regulation of metabolism

2012 
Inositol phosphates (IPs) act as signaling messengers to regulate various cellular processes such as growth. Inositol polyphosphate multikinase (IPMK) generates inositol tetrakis- and pentakisphosphates (IP4 and IP5), acting as a key enzyme for inositol polyphosphate biosynthesis. IPMK was initially discovered as an essential subunit of the arginine-sensing transcription complex in budding yeast. In mammals, IPMK is also known as a physiologically important phosphatidylinositol 3 kinase (PI3K) that forms phosphatidylinositol 3,4,5-trisphosphate (PIP3), which activates Akt/PKB and stimulates its signaling. Acting in a catalytically independent fashion, IPMK mediates the activation of mammalian target of rapamycin (mTOR) in response to essential amino acids. In addition, IPMK binds and modulates AMP-activated protein kinase (AMPK) signaling pathways, including those involved in hypothalamic control of food intake. These recent findings strongly suggest that IPMK is a versatile player in insulin-, nutrient-, and energy-mediated metabolism signaling networks. Agents that control IPMK functions may provide novel therapeutics in metabolic syndromes such as obesity and diabetes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    43
    Citations
    NaN
    KQI
    []