Tailoring the Energy Band Structure and Interfacial Morphology of the ETL via Controllable Nanocluster Size Achieves High-Performance Planar Perovskite Solar Cells.

2021 
Planar-type perovskite solar cells (p-PSCs) based on SnO2 have garnered further attention due to their simple and low-temperature fabrication. Improving the critical properties of the electron transport layer (ETL) is an effective way to enhance the performance of p-PSC devices. Here, a brand-new method is developed to relieve the contact recombination caused by the rough fluorine-doped tin oxide (FTO) surface and further boosts the electrical concentration of the ETL. A SnO2-ethylene diamine tetraacetic acid (EDTA) acylamide compound (SEAC) with hydrogen bond-induced adjustable cluster size is reported for the first time. The rational choice of the SEAC cluster size is the key for obtaining the smooth interfacial morphology of the ETL on the rugged FTO substrate. In addition, the energy band gap decreases with the increasing cluster size, and consequently, results in improved electrical conductivity of the SEAC. The upshifted Fermi energy level leads to higher electron concentration, which is an important physical quantity of the ETL. The PSC devices based on the optimized SEAC achieve an improved power conversion efficiency of 21.29% with negligible J-V hysteresis due to significantly enhanced electron transport and reduced contact charge recombination at the ETL/perovskite interface. In general, this paper comes up with a unique strategy to improve the quality of the SnO2-based ETL.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    68
    References
    0
    Citations
    NaN
    KQI
    []