Combined BubR1 protein down-regulation and RASSF1A hypermethylation in Wilms tumors with diverse cytogenetic changes.

2008 
BUB1B and RASSF1A genes play specific roles in the mitotic checkpoint, and their defects may cause chromosome instability or aneuploidy in mouse fibroblasts and human cancer cell lines; however, few studies have reported a correlation between defects in these genes and chromosome changes in human tumor samples. We examined chromosome abnormalities in 25 Wilms tumors by metaphase comparative genomic hybridization, and classified them into 14 hyperdiploid (50 ≥ chromosomes), 2 near-or-pseudodiploid, and 9 diploid tumors. We also examined various molecular aspects of BUB1B and RASSF1A, and evaluated the relationship between chromosome changes and the status of both genes. No tumors showed BUB1B mutation. BubR1 protein (BUB1B gene product) expression was undetectable or decreased in five of six hyperdiploid or near-or-pseudodiploid tumors and increased in four of five diploid tumors, whereas all seven tumors examined showed BUB1B mRNA expression irrespective of their chromosome pattern. Furthermore, while complete promoter methylation of RASSF1A was found in 13 of 16 hyperdiploid or near-or-pseudodiploid tumors, unmethylated RASSF1A was found in 5 of 9 diploid tumors. Partial RASSF1A methylation was found in three hyperdiploid or near-or-pseudodiploid tumors and in four diploid tumors. Thus, BubR1 protein expression decreased, and the promoter region of RASSF1A was completely methylated in the great majority of hyperdiploid or near-or-pseudodiploid tumors, BubR1 protein expression increased and RASSF1A was unmethylated in the majority of diploid tumors. These findings suggest that the combined BubR1 protein down-regulation and RASSF1A hypermethylation might be implicated in the formation of chromosomal changes found in Wilms tumors. © 2008 Wiley-Liss, Inc.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    15
    Citations
    NaN
    KQI
    []