Role of mitochondria in the response of arbuscular mycorrhizal fungi to strigolactones

2009 
The plant signals strigolactones activate seed germination of the parasitic weeds (Striga and Orobanche), growth of arbuscular mycorrhizal (AM) fungi and have recently been described as a new class of plant hormones that inhibit shoot branching. In AM fungi, the synthetic strigolactone analogue GR24 rapidly stimulates mitochondrial metabolism (within minutes) and biogenesis (within one hour). New gene expression, more active nuclear division and cell proliferation occur later (within days). By using pharmacological approaches to inhibit the mitochondrial ATP synthesis, various steps of the respiratory chain and the mitochondrial protein translation, we further describe the mechanisms underlying the mitochondrial response to GR24. We show with SHAM and KCN inhibition treatments that the respiratory chain of Gigaspora rosea is branched and includes an alternative oxydase. The two electron transports can be used for GR24 activation of hyphal branching but only the alternative one is used for spore germination. By using the inhibitors Oligomycin, Rotenone, Antimycine A and KCN, we show that indirect (proton pumping) and direct inhibition of ATP synthase does not completely abolish the activation of hyphal branching by GR24. However, hyphal branching was totally inhibited with the suppression of mitochondrial biogenesis, confirming the essential role played by mitochondria to amplify the strigolactone response of AM fungi.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    30
    Citations
    NaN
    KQI
    []