High density operation in H?mode discharges by inboard launch pellet refuelling

2000 
Operating a tokamak at plasma densities near the empirical Greenwald limit eGw in H mode could yield significant advantages for a fusion reactor. Trying to avoid the strong confinement degradation observed with gas puff refuelling, pellet injection from the magnetic high field side was applied. Sufficient pellet particle flux was supplied to achieve persistent density rampup and to enable density control in H mode at a level beyond eGw for the first time. The pellet induced density increase decays in a fast phase with τ = 10 ms until about half of the latest pellet inventory remains, and decays thereafter to the base density on the particle confinement timescale with τ = 120 ms. The fast decay is the result of strong ELM events following each injected pellet, accompanied by a loss of energy, causing a transient reduction of the plasma energy content by convective heat flux. Recovery of the plasma energy after the ELM sequence takes place with τ = 25 ms, enabling transient operation at appropriately high densities without significant confinement degradation. To reach this scenario, however, confinement degradation caused by other factors must be inhibited. Other factors causing confinement degradation were found to be the increase of neutral gas pressure by pellet born gas puff at insufficient pumping speed or the occurrence of neoclassical tearing modes triggered by pellets when the temperatures close to rational surfaces were reduced too strongly.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    22
    Citations
    NaN
    KQI
    []