language-icon Old Web
English
Sign In

Protected Solid-State Qubits

2021 
The implementation of large-scale fault-tolerant quantum computers calls for the integration of millions of physical qubits, with error rates of physical qubits significantly below 1%. This outstanding engineering challenge may benefit from emerging qubits that are protected from dominating noise sources in the qubits' environment. In addition to different noise reduction techniques, protective approaches typically encode qubits in global or local decoherence-free subspaces, or in dynamical sweet spots of driven systems. We exemplify such protective qubits by reviewing the state-of-art in protected solid-state qubits based on semiconductors, superconductors, and hybrid devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []