Reference gene selection for quantitative real-time PCR normalization in larvae of three species of Grapholitini (Lepidoptera: Tortricidae).

2015 
Despite the agricultural importance of species in the Grapholitini (Lepidoptera: Tortricidae), and the value of gene expression analysis for improved population management, few gene expression studies based on quantitative real-time PCR (qPCR) have been conducted for this tribe. Part of the reason for this lack of information is that suitable reference genes, which are fundamental for accurate normalization of qPCR studies, have not been identified for the tribe. Thus, the expression stability of six potential reference genes (ACT, AK, COI, EF1, ENO and TUB) was assessed in three different tissues (whole body, midgut and cuticle) of Cryptophlebia peltastica (Meyrick), Cydia pomonella (L.) and Thaumatotibia leucotreta (Meyrick). Additionally, these reference genes were tested using T. leucotreta at different temperatures (15°C, 25°C and 35°C) with and without baculovirus infection. Suitable reference genes were identified for the whole body and midgut tissue of all three species, and for cuticle tissue of Cy. pomonella and T. leucotreta. When T. leucotreta was infected with the virus at all temperature conditions ACT, AK and EF1 were found to be the most suitable reference genes for experimental normalization. In general, for all tissue types, species and stress conditions, AK and EF1 were the best-performing reference genes. However, even though the three species analysed were closely related and within the same tribe, each species required varying gene combinations for suitable normalization. This study provides the first reference gene evaluation for the Tortricidae, and paves the way for future qPCR analysis in Tortricidae.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    5
    Citations
    NaN
    KQI
    []