Finite-size nanoscaling of the critical temperature of ferromagnets with variable range of spin interactions

2007 
We report an analysis of data on the thickness-dependent Curie temperatures TC of itinerant ferromagnetic thin films with variable range of spin interactions “tuned” by alloying transition metals. We observe that TC decreases with decreasing film thickness according to the finite-size effect power law for two-dimensional Ising thin films, down to a critical thickness R0, beyond which point TC reduces linearly with further decreasing thickness. The demarcation point scales with the range of spin interactions R0. The parameter R0 scales with the evolution of the magnetic moment on the Slater-Pauling curve. This analysis of ultrathin film data provides a measure of the effective range of spin interactions in ferromagnets and demonstrates that, when the dimension L reduces below the intrinsic interaction length R0, TC no longer follows the finite-size effect power law behavior.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    4
    Citations
    NaN
    KQI
    []