Does the γ subunit move to an abortive position for ATP hydrolysis when the F1·ADP·Mg complex isomerizes to the inactive F1*·ADP·Mg complex?

1996 
F1-ATPases transiently entrap inhibitory MgADP in a catalytic site during turnover when noncatalytic sites are not saturated with ATP. An initial burst of ATP hydrolysis rapidly decelerates to a slow intermediate rate that gradually accelerates to a final steady-state rate. Transition from the intermediate to the final rate is caused by slow binding of ATP to noncatalytic sites which promotes dissociation of inhibitory MgADP from the affected catalytic site. Evidence from several laboratories suggests that the γ subunit rotates with respect to α/β subunit pairs of F1-ATPases during ATP hydrolysis. The α3β3 and α3β3δ subcomplexes of the TF1-ATPase do not entrap inhibitory MgADP in a catalytic site during turnover, suggesting involvement of the γ subunit in the entrapment process. From these observations, it is proposed that the γ subunit moves into an abortive position for ATP hydrolysis when inhibitory MgADP is entrapped in a catalytic site during ATP hydrolysis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    7
    Citations
    NaN
    KQI
    []