A network enhancement model with integrated lane reorganization and traffic control strategies

2016 
Summary Lane reorganization strategies such as lane reversal, one-way street, turning restriction, and cross elimination have demonstrated their effectiveness in enhancing transportation network capacity. However, how to select the most appropriate combination of those strategies in a network remains challenging to transportation professionals considering the complex interactions among those strategies and their impacts on conventional traffic control components. This article contributes to developing a mathematical model for a traffic equilibrium network, in which optimization of lane reorganization and traffic control strategies are integrated in a unified framework. The model features a bi-level structure with the upper-level model describing the decision of the transportation authorities for maximizing the network capacity. A variational inequality (VI) formulation of the user equilibrium (UE) behavior in choosing routes in response to various strategies is developed in the lower level. A genetic algorithm (GA) based heuristic is used to yield meta-optimal solutions to the model. Results from extensive numerical analyses reveal the promising property of the proposed model in enhancing network capacity and reducing congestion. Copyright © 2016 John Wiley & Sons, Ltd.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    15
    Citations
    NaN
    KQI
    []