Model-based blood flow quantification from rotational angiography

2008 
Abstract For assessment of cerebrovascular diseases, it is beneficial to obtain three-dimensional (3D) information on vessel morphology and haemodynamics. Rotational angiography is routinely used to determine the 3D geometry. In this paper, we propose a method to exploit the same acquisition to determine the blood flow waveform and the mean volumetric flow rate in the large cerebral arteries. The method uses a model of contrast agent dispersion to determine the flow parameters from the spatial and temporal progression of the contrast agent concentration, represented by a flow map. Furthermore, it overcomes artefacts due to the rotation (overlapping vessels and foreshortened vessels at some projection angles) of the C-arm using a reliability map. The method was validated on images from different phantom experiments. We analysed different properties of the flow quantification method, including the influence of noise and the influence of the length of the analysed blood vessel. In most cases, the relative error was between 5% and 10% for the volumetric mean flow rate and between 10% and 15% for the blood flow waveform. The manual interaction took at most one minute and the computational time for the flow quantification was between 4 and 20 min on a PC. From this, we conclude that the method has the potential to give quantitative estimates of blood flow parameters during cerebrovascular interventions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    28
    Citations
    NaN
    KQI
    []