Single-Species Atomic Comagnetometer Based on ^{87}Rb Atoms.

2020 
The comagnetometer has been one of the most sensitive devices with which to test new physics related to spin-dependent interactions, but the comagnetometers based on overlapping ensembles of multiple spin species usually suffer from systematic errors due to magnetic field gradients. Here, we propose a comagnetometer based on the Zeeman transitions of the dual hyperfine levels in ground-state ^{87}Rb atoms, which shows nearly negligible sensitivity to variations of laser power and frequency, magnetic field, and magnetic field gradients. We measured the hypothetical spin-dependent gravitational energy of the proton with the comagnetometer, which is smaller than 4×10^{-18}  eV, comparable to the most stringent existing constraint. Through optimizing the system parameters such as cell temperature, laser power, amplitude of driving magnetic field, as well as choosing better current source, it is possible to improve the sensitivity of the comagnetometer further.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    9
    Citations
    NaN
    KQI
    []