Assessment of natural and anthropogenic aerosol air pollution in the Middle East using MERRA-2, CAMS data assimilation products,and high-resolution WRF-Chem model simulations

2020 
Abstract. Modern-Era Retrospective analysis for Research and Applications v.2 (MERRA-2), Copernicus Atmosphere Monitoring Service Operational Analysis (CAMS-OA) data assimilation products, and a regional Weather Research and Forecasting model (10 km resolution) coupled with Chemistry (WRF-Chem) were used to evaluate natural and anthropogenic aerosol air pollution in the ME during 2015–2016. Satellite and ground-based AOD observations, as well as in-situ Particulate Matter (PM) measurements for 2016, were used for validation. WRF-Chem code was modified to correct the calculation of dust gravitational settling and aerosol optical properties. The dust emission in WRF-Chem is calibrated to fit Aerosol Optical Depth (AOD) and aerosol volume size distributions obtained from Aerosol Robotic Network (AERONET) observations. MERRA-2 was used to construct WRF-Chem initial and boundary conditions both for meteorology and chemical/aerosol species. SO2 emissions in WRF-Chem are based on the novel NASA SO2 emission dataset that reveals unaccounted sources over the ME. Although aerosol fields in WRF-Chem and assimilation products are quite consistent, WRF-Chem, due to its higher spatial resolution and better SO2 emissions, is preferable for analysis of regional air-quality over the ME. The WRF-Chem's PM background concentrations exceed the World Health Organization (WHO) guidelines over the entire ME. The major contributor to PM (~ 75–95 %) is mineral dust. In the ME urban centers and near oil recovery fields, non-dust aerosols (primarily sulfate) contribute up to 26 % into PM2.5. The contribution of sea salt into PM can rich up to 5 %. The contribution of organic matter into PM prevails over black carbon.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    92
    References
    15
    Citations
    NaN
    KQI
    []