Influence of sound directions on acoustic field characteristics within a rectangle-shaped sonoreactor: Numerical simulation and experimental study

2018 
Abstract Acoustic field intensity and distribution are the most important factors for the efficiency of ultrasonic processing. Recent simulation studies suggested that sound direction could influence both acoustic field intensity and distribution, but this influence has scarcely been investigated experimentally so far. In this work, we systematically studied the influence of sound directions on the acoustic field with up to five directions via both simulation and experiment. Fluid-structure interaction (FSI) harmonic response simulation and aluminum foil erosion experiment were employed to study the acoustic field under different directional combinations of ultrasonic sources. Results of simulation coincided well with that of experiment, which indicated that acoustic intensity, uniformity and cavitation characteristics were significantly affected by sound directions. Based on the results, several influence rules of sound directions were proposed. Optimal acoustic field with sound intensity of 30 times higher than that of single-wall excitation and severe cavitation volume of 95% was obtained. This work provides useful guidelines for acoustic field design of high-intensity ultrasonic apparatus.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    9
    Citations
    NaN
    KQI
    []