Chloride-selective electrodes based on "two-wall" aryl-extended calix[4]pyrroles: combining hydrogen bonds and anion-π interactions to achieve optimum performance.

2015 
The performance of chloride-selective electrodes based on “two-wall” aryl-extended calix[4]pyrroles and multiwall carbon nanotubes is presented. The calix[4]pyrrole receptors bear two phenyl groups at opposite meso-positions. When the meso-phenyl groups are decorated with strong electron-withdrawing substituents, attractive anion–π interactions may exist between the receptor’s aromatic walls and the sandwiched anion. These anion–π interactions are shown to significantly affect the selectivity of the electrodes. Calix[4]pyrrole, bearing a p-nitro withdrawing group on each of the meso-phenyl rings, afforded sensors that display anti-Hofmeister behavior against the lipophilic salicylate and nitrate anions. Based on the experimental data, a series of principles that help in predicting the suitability of synthetic receptors for use as anion-specific ionophores is discussed. Finally, the sensors deliver excellent results in the direct detection of chloride in bodily fluids.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    24
    Citations
    NaN
    KQI
    []