NOAA and BOEM Minimum Recommendations for Use of Passive Acoustic Listening Systems in Offshore Wind Energy Development Monitoring and Mitigation Programs

2021 
Offshore wind energy development is rapidly ramping up in United States (U.S.) waters in order to meet renewable energy goals. With a diverse suite of endangered large whale species and a multitude of other protected marine species frequenting these same waters, understanding the potential consequences of construction and operation activities is essential to advancing responsible offshore wind development. Passive acoustic monitoring (PAM) represents a newer technology that has become one of several methods of choice for monitoring trends in the presence of species, the soundscape, mitigating risk, and evaluating potential behavioral and distributional changes resulting from offshore wind activities. Federal and State regulators, the offshore wind industry, and environmental advocates require detailed information on PAM capabilities and techniques needed to promote efficient, consistent, and meaningful data collection efforts on local and regional scales. PAM during offshore wind construction and operation may be required by the National Oceanic and Atmospheric Administration and Bureau of Ocean Energy Management through project-related permits and approvals issued pursuant to relevant statutes and regulations. The recommendations in this paper aim to support this need as well as to aid the development of project-specific PAM Plans by identifying minimum procedures, system requirements, and other important components for inclusion, while promoting consistency across plans. These recommendations provide an initial guide for stakeholders to meet the rapid development of the offshore wind industry in U.S. waters. Approaches to PAM and agency requirements will evolve as future permits are issued and construction plans are approved, regional research priorities are refined, and scientific publications and new technologies become available
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    129
    References
    0
    Citations
    NaN
    KQI
    []