Atomic reconstruction at van der Waals interface in twisted bilayer graphene

2018 
Interfaces between crystalline materials have been an essential engineering platform for modern electronics. At the interfaces in two-dimensional (2D) van der Waals (vdW) heterostructures, the twist-tunability offered by vdW crystals allows the construction of a quasiperiodic moir\'e superlattice of tunable length scale, leading to unprecedented access to exotic physical phenomena. However, these interfaces exhibit more intriguing structures than the simple moir\'e pattern. The vdW interaction that favors interlayer commensurability competes against the intralayer elastic lattice distortion, causing interfacial reconstruction with significant modification to the electronic structure. Here we demonstrate engineered atomic-scale reconstruction at the vdW interface between two graphene layers by controlling the twist angle. Employing transmission electron microscopy (TEM), we find local commensuration of Bernal stacked graphene within each domain, separated by incommensurate structural solitons. We observe electronic transport along the triangular network of one-dimensional (1D) topological channels as the electronic bands in the alternating domains are gapped out by a transverse electric field. The atomic scale reconstruction in a twisted vdW interface further enables engineering 2D heterostructures with continuous tunability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    14
    Citations
    NaN
    KQI
    []