Propagation and self-healing properties of Lommel-Gaussian beam through atmospheric turbulence

2021 
The superposition of basic non-diffracting beams triggered new research hotspots lately, laying opportunities for long-distance wireless optical communication. The Lommel-Gaussian (LMG) beam formed by the superposition of Bessel-Gaussian light not only possesses non-diffraction feature, but also has tunable symmetry. With the help of Poynting vector analysis, we observed a smaller radial energy flow component during the propagation of the high order symmetrical LMG beam, which allows it to maintain the original beam profile over long distance. Thanks to the energy oscillation of the mainlobe and sidelobes, the mainlobe blocked by the symmetrical LMG beam can be restored. Also, the random phase screen with angular spectrum method is used to describe the beam behaviors in turbulence. The results show that the symmetry LMG is preferred in free space optical communication, and the asymmetric LMG performs poorly due to asymmetric energy transfer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    0
    Citations
    NaN
    KQI
    []