Multi-scenario urban flood risk assessment by integrating future land use change models and hydrodynamic models

2021 
Abstract. Urbanization and climate change are the critical challenges in the 21st century. Flooding by extreme weather events and human activities can lead to catastrophic impacts in fast-urbanizing areas. However, high uncertainty in climate change and future urban growth limit the ability of cities to adapt to flood risk. This study presents a multi-scenario risk assessment method that couples the future land use simulation model (FLUS) and floodplain inundation model (LISFLOOD-FP) to simulate and evaluate the impacts of future urban growth scenarios with flooding under climate change (two representative concentration pathways (RCPs 2.6 and 8.5)). By taking Shanghai coastal city as an example, we then quantify the role of urban planning policies in future urban development to compare urban development under multiple policy scenarios (Business as usual, BU; Growth as planned, GP; Growth as eco-constraints, GE). Geospatial databases related to anthropogenic flood protection facilities, land subsidence, and storm surge are developed and used as inputs to the LISFLOOD-FP model to estimate flood risk under various urbanization and climate change scenarios. The results show that urban growth under the three scenario models manifests significant differences in expansion trajectories, influenced by key factors such as infrastructure development and policy constraints. Comparing the urban inundation results for the RCP2.6 and RCP8.5 scenarios, the urban inundation area under the GE scenario is less than that under the BU scenario, but more than that under the GP scenario. We also find that urban will tend to expand to areas vulnerable to floods under the restriction of ecological environment protection. The increasing flood risk information determined by the coupling model helps to understand the spatial distribution of future flood-prone urban areas and promote the re-formulation of urban planning in high-risk locations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []