Density-Dependent Compensatory Growth in Brown Trout (Salmo trutta) in Nature

2013 
Density-dependence is a major ecological mechanism that is known to limit individual growth. To examine if compensatory growth (unusually rapid growth following a period of imposed slow growth) in nature is density-dependent, one-year-old brown trout (Salmo trutta L.) were first starved in the laboratory, and then released back into their natural stream, either at natural or at experimentally increased population density. The experimental trout were captured three times over a one-year period. We found no differences in growth, within the first month after release (May-June), between the starved fish and the control group (i.e. no evidence of compensation). During the summer however (July-September), the starved fish grew more than the control group (i.e. compensation), and the starved fish released into the stream at a higher density, grew less than those released at a natural density, both in terms of weight and length (i.e. density-dependent compensation). Over the winter (October-April), there were no effects of either starvation or density on weight and length growth. After the winter, starved fish released at either density had caught up with control fish in body size, but recapture rates (proxy for survival) did not indicate any costs of compensation. Our results suggest that compensatory growth in nature can be density-dependent. Thus, this is the first study to demonstrate the presence of ecological restrictions on the compensatory growth response in free-ranging animals.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    21
    Citations
    NaN
    KQI
    []