Phenotypic transformation of normal rat kidney fibroblasts by endothelin-1. Different mode of action from lysophosphatidic acid, bradykinin, and prostaglandin F2α

1999 
Abstract In the present study, we compared the effects of endothelin (ET)-1 on cell proliferation and second messenger induction in normal rat kidney (NRK) fibroblasts, with those of other activators of G-protein-coupled receptors such as prostaglandin (PG)-F 2α , bradykinin (BK), and lysophosphatidic acid (LPA). LPA is mitogenic by itself, while the other factors require the presence of EGF. In density-arrested NRK cells, ET-1 and LPA induce phenotypic transformation rapidly, with similar kinetics as retinoic acid (RA) and transforming growth factor (TGF)-β, while BK and PGF 2α only do so with delayed kinetics. ET-1 and PGF 2α are strong inducers of anchorage-independent growth, with a similar level of induction as TGFβ, in contrast to LPA and BK. When investigating the second messenger generation, we found that ET-1 is the strongest activator of arachidonic acid release and phosphatidylinositol diphosphate hydrolysis. Only in the case of ET-1 the cell depolarization is not reversible upon removal of the factor. Similarly, only the ET-1-induced transient enhancement of intracellular calcium concentration is paralleled by both homologous and heterologous desensitization. In conclusion, these data show that ET-1 is a potent inducer of second messengers and phenotypic transformation in NRK cells, with characteristics that clearly differ from those of other activators of G-protein-coupled receptors, most likely as a result of prolonged receptor activation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    10
    Citations
    NaN
    KQI
    []