A CMOS-compatible morphotropic phase boundary

2021 
Morphotropic phase boundaries (MPBs) show substantial piezoelectric and dielectric responses, which have practical applications. The predicted existence of MPB in HfO2-ZrO2 solid solution thin film has provided a new way to increase the dielectric properties of a silicon-compatible device. Here, we present a new fabrication design by which the density of MPB and consequently the dielectric constant of HfO2-ZrO2 thin film was considerably increased. The density of MPB was controlled by fabrication of a 10-nm [1 nm-Hf0.5Zr0.5O2 (Ferroelectric)/1 nm-ZrO2 (Antiferroelectric)] nanolaminate followed by an appropriate annealing process. The coexistence of orthorhombic and tetragonal structures, which are the origins of ferroelectric (FE) and antiferroelectric (AFE) behaviors, respectively, was structurally confirmed, and a double hysteresis loop that originates from AFE ordering, with some remnant polarization that originates from FE ordering, was observed in P-E curve. A remarkable increase in dielectric constant compared to the conventional HfO2-ZrO2 thin film was achieved by controlling the FE-AFE ratio. The fabrication process was performed at low temperature and the device is compatible with silicon technology, so the new design yields a device that has possible applications in near-future electronics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    0
    Citations
    NaN
    KQI
    []