trans-Recessive mutation in the first structural gene of the histidine operon that results in constitutive expression of the operon.

1975 
The first enzyme for histidine biosynthesis, encoded in the hisG gene, is involved in regulation of expression of the histidine operon in Salmonella typhimurium. The studies reported here concern the question of how expression of the histidine operon is affected by a mutation in the hisG gene that alters the allosteric site of the first enzyme for histidine biosynthesis, rendering the enzyme completely resistant to inhibition by histidine. The intracellular concentrations of the enzymes encoded in the histidine operon in a strain carrying such a mutation on an episome and missing the chromosomal hisG gene are three- to fourfold higher than in a strain carrying a wild-type hisG gene on the episome. The histidine operon on such a strain fails to derepress in response to histidine limitation and fails to repress in response to excess histidine. Furthermore, utilizing other merodiploid strains, we demonstrate that the wild-type hisG gene is trans dominant to the mutant allele with respect to this regulatory phenomenon. Examination of the regulation of the histidine operon in strains carrying the feedback-resistant mutation in an episome and hisT and hisW mutations in the chromosome showed that the hisG regulatory mutation is epistatic to the hisT and hisW mutations. These data provide additional evidence that the first enzyme for histidine biosynthesis is involved in autogenous regulation of expression of the histidine operon.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    3
    Citations
    NaN
    KQI
    []