Training Lightweight yet Competent Network via Transferring Complementary Features

2020 
Though deep neural networks have achieved quite impressive performance in various image detection and classification tasks, they are often constrained by requiring intensive computation and large storage space for deployment in different scenarios and devices. This paper presents an innovative network that aims to train a lightweight yet competent student network via transferring multifarious knowledge and features from a large yet powerful teacher network. Based on the observations that different vision tasks are often correlated and complementary, we first train a resourceful teacher network that captures both discriminative and generative features for the objective of image classification (the main task) and image reconstruction (an auxiliary task). A lightweight yet competent student network is then trained by mimicking both pixel-level and spatial-level feature distribution of the resourceful teacher network under the guidance of feature loss and adversarial loss, respectively. The proposed technique has been evaluated over a number of public datasets extensively and experiments show that our student network obtains superior image classification performance as compared with the state-of-the-art.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    0
    Citations
    NaN
    KQI
    []