Spectral restoration for femtosecond spectral interferometry with attosecond accuracy

2010 
A spectral restoration algorithm appropriate for the asymmetric and wavelength-dependent linespread of broadband spectrographs with pixelated detectors is presented. The algorithm’s accuracy was tested on spectra of femtosecond pulse pairs with known delays from an actively stabilized interferometer. Using interleaved atomic line spectra, the spectrograph calibration and effective linespread function were retrieved with sub-pixel accuracy. The spectral restoration by Fourier pseudo-deconvolution with the effective linespread function reduced systematic artifacts and allowed recovery of the phase delay to ±2.4 as over a 2 ps range (±0.7 nm path differences over 0.6 mm). The slope delay was determined to within ±20 as and constant (intercept) phase shifts to within ±0.05 rad; these accuracies are limited by Fourier filtering of charge coupled device and interferometer imperfections.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    22
    Citations
    NaN
    KQI
    []