Seawater heat pumps in China, a spatial analysis

2020 
Abstract Fossil fuel based building space heating and cooling contribute to more than 10% total final energy consumption in China. Consequent carbon dioxide and air pollutants emissions bring about atmospheric pressure and associated respiratory diseases. Seawater heat pumps as a candidate sustainable building space heating and cooling solution can alleviate such environmental pressure since China has a long coastline and many coastal cities have the possibility for seawater heat pump implementation. However, stakeholders are still suffering from insufficient understanding of seawater heat pumps feasibility in different coastal cities of China from techno-economic, environmental and geographical perspectives. This paper proposes a systematic method to evaluate seawater heat pump potential in different locations of China considering various local spatial parameters in the source and sink side of the energy system. A key performance indicator system is introduced to quantitatively analyze the relative advantages and disadvantages of applying seawater heat pumps compared with status-quo systems. Quantitative evaluation results show that seawater heat pumps have a higher potential in north Chinese coastal cities from techno-economic point of view when compared with existing heating and cooling systems. Environmentally, seawater heat pumps have to reach a critical seasonal coefficient of performance value to guarantee its potential in carbon emissions saving. In south Chinese coastal cities, seawater heat pumps have to reach a more satisfactory system efficiency and a more competitive system cost in order to exploit its full advantages over status-quo systems from techno-economic perspectives. Environmentally, seawater heat pumps are more attractive than competing technologies in south cities. Also, north Chinese cities are geographically more feasible for seawater heat pumps applications compared with south cities.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    10
    Citations
    NaN
    KQI
    []