High performance tandem organic solar cells via a strongly infrared-absorbing narrow bandgap acceptor.

2021 
Tandem organic solar cells are based on the device structure monolithically connecting two solar cells to broaden overall absorption spectrum and utilize the photon energy more efficiently. Herein, we demonstrate a simple strategy of inserting a double bond between the central core and end groups of the small molecule acceptor Y6 to extend its conjugation length and absorption range. As a result, a new narrow bandgap acceptor BTPV-4F was synthesized with an optical bandgap of 1.21 eV. The single-junction devices based on BTPV-4F as acceptor achieved a power conversion efficiency of over 13.4% with a high short-circuit current density of 28.9 mA cm−2. With adopting BTPV-4F as the rear cell acceptor material, the resulting tandem devices reached a high power conversion efficiency of over 16.4% with good photostability. The results indicate that BTPV-4F is an efficient infrared-absorbing narrow bandgap acceptor and has great potential to be applied into tandem organic solar cells. Development of tandem organic solar cells has been limited by the choice of near-infrared absorbing materials for the rear cell. Here, the authors report a simple strategy to extend the conjugation length of acceptor Y6 and broaden its absorption range to near-infrared region. A tandem organic solar cell with efficiency of 16.4% was achieved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    24
    Citations
    NaN
    KQI
    []