Porous gelatin microspheres for controlled drug delivery with high hemostatic efficacy.

2021 
Effective hemostasis and antibacterial efficacy for extensive trauma in a warzone and civilian accidents are important for reducing mortalities and serious complications. Gelatin has been widely used as a hemostatic agent and has the potential for use in drug delivery systems. To enhance its hemostatic efficiency and create conducive conditions for sustained drug release, we developed Vancomycin-impregnated porous gelatin microspheres (Van-MS) by introducing the porous structure into gelatin. Results showed that Van-MS can be successfully developed via the ice crystal pore-making method combined with hydration maintaining its stability. We also explored the use of biodegradable porous materials for treatment of infections and bleeding in soft tissue, and analyzed Van-MS via scanning electron microscopy (SEM), scanning electron microscopy and energy dispersive X-ray spectrometry (SEM-EDS), Fourier Transform infrared spectroscopy (FTIR) and High-Performance Liquid Chromatography (HPLC). Results from Van-MS showed high hemostatic both efficacies in vivo and in vitro. Moreover, muscle lesions treated by Van-MS showed formation of fibrous connective tissue and were nearly sealed after 10 days in a rabbit traumatic infection model. This antibacterial performance was attributed to absorption of exudates and sustained drug release. Hemostatic effects were due to: (1) particles water swelling form a physical barrier that led to physical hemostasis; (2) activation of the endogenous coagulation pathway which resulted in physiological hemostasis; (3) aggregation of platelets and erythrocytes after absorbing water; and (4) stronger hemostatic properties owing to their porous structure with high specific surface area.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    1
    Citations
    NaN
    KQI
    []