Fluorinating Dopant-Free Small-Molecule Hole-Transport Material to Enhance the Photovoltaic Property.

2021 
For the stability and commercial development of the perovskite solar cells (PVK-SCs), synthesizing high-efficiency dopant-free hole-transport materials (DF-HTMs) and exploring how the DF-HTM structure affects the photovoltaic performance is inevitable. Two small-molecule DF-HTMs based on 2,2'-bithiophene as a central part (denoted by BT-MTP and DFBT-MTP) were designed and synthesized. DFBT-MTP, with two more fluorine atoms substituted on the 2,2'-bithiophene group, exhibited enhanced photovoltaic property as DF-HTMs, including larger backbone planarity, declining highest occupied molecular orbit (HOMO) energy level, increasing hole transportation, more effective passivation, and efficient charge extraction. With fluorinated DFBT-MTP being applied as DF-HTMs in p-i-n PVK-SCs, an efficiency of 20.2% was achieved, showing ∼35% efficiency increase compared with the nonfluorinated BT-MTP-based devices. The leading power conversion efficiency (PCE) indicates that the fluorinated compounds should be a promising direction for exploring high-performance DF-HTMs in the p-i-n PVK-SCs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    4
    Citations
    NaN
    KQI
    []