Measurements, performance and analysis of LoRa FABIAN, a real-world implementation of LPWAN

2016 
Up to recently, two main approaches were used for connecting the “things” in the growing Internet of Things (IoT) — one based on multi-hop mesh networks, using short-range technologies and unlicensed spectrum, and the other based on long-range cellular network technologies using corresponding licensed frequency bands. New type of connectivity used in Low-Power Wide Area networks (LPWAN), challenges these approaches by using low-rate long-range transmission technologies in unlicensed sub-GHz frequency bands. In this paper, we do performance testing on one such star-topology network, based on Semtech's LoRa™ technology, and deployed in the city of Rennes — LoRa FABIAN. In order to check the quality of service (QoS) that this network can provide, generally and in given conditions, we conducted a set of performance measurements. We performed our tests by generating and then observing the traffic between IoT nodes and LoRa IoT stations using our LoRa FABIAN protocol stack. With our experimental setup, we were able to generate traffic very similar to the one that can be used by real application such as sensor monitoring. This let us extract basic performance metrics, such as packet error rate (PER), but also metrics related specifically to the LoRa physical layer, such as the Received Signal Strength Indicator (RSSI) and Signal to Noise ratio (SNR), within various conditions. Our findings provide insight about the performance of LoRa networks, but also about evaluation methods for these type of networks. We gathered measurement data that we make freely available together with the tools we used.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    76
    Citations
    NaN
    KQI
    []