Simultaneous Detection of Multiple Atmospheric Components Using an NIR and MIR Laser Hybrid Gas Sensing System.

2020 
A compact multi-gas sensor has been developed for simultaneous detection of atmospheric carbon monoxide (CO), nitrous oxide (N2O), and methane (CH4). Instead of the traditional time-division multiplexing detection technique, two lasers having center emission wavelengths of 1.653 μm (near-infrared (NIR) diode feedback (DFB) laser diode) and 4.56 μm (mid-infrared (MIR) quantum cascade laser) were simultaneously coupled to a multipass cell using a dichroic mirror, which significantly decreased the complexity of the measurement and increased the temporal resolution of the spectrometer. Wavelength modulation spectroscopy (WMS) with the second-harmonic detection technique (WMS-2f) was used to improve the detection sensitivity. A LabVIEW-based digital lock-in amplifier (DLIA) algorithm and system control unit was developed to make the system more compact and flexible. Allan deviation analysis indicates that detection limits of 6.36 ppb by volume for CO, 4.9 ppb by volume for N2O, and 23.6 ppb by volume for CH4 are obtained at 1 s averaging time, and the sensitivity can be improved to 0.44 ppb for CO, 0.41 ppb for N2O, and 2 ppb for CH4 at an optimal averaging time of 900 s. Two-day real-time measurement in ambient air was performed to demonstrate the long-term stability of the sensor system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    5
    Citations
    NaN
    KQI
    []