Superequilibrium increase in the chemical reaction rate in the front and other effects of gas detonation numerically simulated in the channel by instant heating of the flat end

2016 
Gas detonation was calculated by the Monte Carlo method at the molecular level on the basis of non-stationary statistical simulation. The detonation was initiated by instant heating of the flat end of the channel. The efficiency of the method and the used block decomposition of the model space is shown. It turned out that an increase in the reaction threshold from 90kТ 1 to 400kТ 1 (k is the Boltzmann constant, and Т 1 is the initial temperature of the gas) resulted in the disappearance of the region of constant parameters behind the front of the detonation wave. The translational non-equilibrium formed in the detonation front strongly increases the rate of the reaction considered at the front edge. The further increase in the reaction threshold leads to the situation where no detonation occurs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    0
    Citations
    NaN
    KQI
    []