Characterization of an amber mutation in the structural gene for ribosomal protein L15, which impairs the expression of the protein export gene, secY, in Escherichia coli.

1984 
Abstract We have previously described a temperature-sensitive mutant, ts215, which is defective in protein secretion. Complementation studies indicated that the mutation was located at the distal part of the spc ribosomal protein operon and the gene secY is required for efficient protein secretion. We now report a more complete genetic and biochemical analysis of the ts215 mutant. These studies revealed that the ts215 mutant has an amber mutation in the gene rp10 for ribosomal protein L15, which is located upstream and adjacent to secY. The amber mutation exerts a polar effect on secY causing a defect in protein secretion. These conclusions were supported by the following observations. The mutant strain carries a phi 80 prophage containing a temperature-sensitive suppressor, supFts6. The strain contains decreased amounts of L15 and is suppressible by a temperature-independent nonsense suppressor. In addition, L15 contains an extra tyrosine residue when suppressed by supF. DNA sequence analysis revealed the presence of a single base change in rp10 resulting in an amber codon at the 38th codon of L15. The mutant phenotype is complemented by a plasmid carrying only the secY gene under lac promoter control. The mutant cells complemented by secY can grow and synthesize proteins at normal rates and abundances at 42 degrees C, despite the fact that their ribosomes contain barely detectable levels of L15. These results indicate that ribosomal protein L15 is dispensable for protein synthesis and cell growth. In contrast, the decreased level of expression of the secY gene leads to defective protein secretion and defective cell growth.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    24
    Citations
    NaN
    KQI
    []