Semi-analytic modeling of FWM noise in dispersion-managed DWDM systems with DQPSK/DPSK/OOK channels

2016 
Abstract Semi-analytic models are developed to deterministically calculate the variances of degenerate and non-degenerate four-wave-mixing (FWM) noises for dispersion-managed dense wavelength division multiplexing (DWDM) systems with pure and mixed differential quadrature-phase-shift keying (DQPSK)/differential phase-shift keying (DPSK)/on-off-keying (OOK) channels. The semi-analytic models include various important propagation effects for exact numerical results. The novel dispersion map used here for dispersion management is composed of effective-area-enlarged positive dispersion fiber (EE-PDF), dispersion slope and dispersion compensating fiber (SCDCF) and nonzero dispersion-shifted fiber (NZ-DSF). It is numerically validated with the new models that, under the condition that all channels have the same average launch powers and baud rates, the impact of FWM noise for mixed DQPSK/OOK channels are more severe than that for pure DQPSK and mixed DQPSK/DPSK channels. It is also shown that the FWM efficiency is strongly dependent on the peak power of launched optical pulse for a large number of channels, as can be mainly attributed to the quasi-linear evolution of pulse shapes in pump channels induced by cross-phase modulation (XPM). Compared with some commercial optical-fiber transmission simulators, massive time-consuming can be avoided by using the newly derived semi-analytic models when transmission performances of such DWDM systems are numerically optimized and evaluated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    8
    Citations
    NaN
    KQI
    []