XCM: An Explainable Convolutional Neural Network for Multivariate Time Series Classification

2020 
We present XCM, an eXplainable Convolutional neural network for Multivariate time series classification. XCM is a new compact convolutional neural network which extracts, in parallel, information relative to the observed variables and time from the input data. Thus, XCM architecture enables faithful explainability based on a post-hoc model-specific method (Gradient-weighted Class Activation Mapping), which identifies the observed variables and timestamps of the input data that are important for predictions. Our evaluation firstly shows that XCM outperforms the state-of-the-art multivariate time series classifiers on both the large and small public UEA datasets. Furthermore, following the illustration of the performance and explainability of XCM on a synthetic dataset, we present how XCM can outperform the current most accurate state-of-the-art algorithm on a real-world application while enhancing explainability by providing faithful and more informative explanations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    2
    Citations
    NaN
    KQI
    []