On-orbit calibration and characterization of GOES-17 ABI IR bands under dynamic thermal condition

2020 
The Advanced Baseline Imager (ABI) is a passive imaging radiometer on-board National Oceanic and Atmospheric Administration’s (NOAA) Geostationary Operational Environmental Satellites-R (GOES-R) series. Its bands 7 to 16 are categorized as infrared (IR) bands, sampling within a spectral range of 3.9 to 13.3  μm in mid-wave infrared (MWIR) and long-wave infrared (LWIR) regions. ABI provides variable area imagery and radiometric information of Earth’s surface, atmosphere, and cloud cover. All of the IR bands are calibrated on-orbit in reference to an internal blackbody. While the ABI aboard the GOES-16 satellite has been working properly, an anomaly with GOES-17 ABI’s cooling system, specifically its loop heat pipe (LHP) subsystem, prevents heat from being efficiently transferred from the ABI electronics to the radiator to be dissipated into space. As a consequence, the heat accumulates inside the instrument, so the temperatures of its key components for IR calibration, including the focal plane modules (FPMs), scan mirrors, and blackbody, cannot be maintained at their designed operational levels. As an example, the temperatures of MWIR and LWIR FPMs, where IR detectors are located, are currently operated at a baseline temperature of ∼20  K warmer than the design and vary by as many as 27 K diurnally. This causes severe degradation to the data quality of ABI IR Level 1b radiance and subsequent Level 2+ products during the hot period of the day. Significant progress has been made to mitigate the effects of the LHP anomaly to optimize the IR performance of GOES-17 ABI. We summarize the efforts made by NOAA’s GOES-R Calibration Working Group, working collaboratively with other teams, to evaluate and alleviate the negative impacts of warmer and floating FPM temperatures on ABI IR calibration, and assess the IR performance accordingly.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    0
    Citations
    NaN
    KQI
    []