LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation

2007 
We developed a liquid-crystal-on-silicon (LCOS) spatial light modulator (SLM) for phase-only modulation. The SLM was designed mainly for wavefront control in adaptive optics, optical manipulation, laser processing, etc. A dielectric multilayer mirror was incorporated into the device to enhance the reflectivity. The number of pixels was 792 x 612 and their size was 20 x 20 microns square. The range of the phase modulation exceeded one wavelength, and the light-utilization efficiency for monochromatic light was approximately 90%. The silicon backplane of the SLM was mechanically weak and its surface was not flat. The poor flatness degraded the output wavefront from the SLM. The device was driven by electronics composed of a digital-visual-interface (DVI) receiver, a field programmable gate array, and 12-bit digital-to-analog converters (DACs). The converted analog voltage signals from the DACs were transmitted to the pixels of the SLM and created phase changes. The driver had several kinds of control modes for the device, according to the level of flatness compensation. In one of the modes, the driver received 12-bit data and transferred them directly to the DACs. This 12-bit control mode enabled highly flexible control of the device characteristics. In the presentation, we report details of the device and experimental results on compensation of distortion in the output wavefront from the device.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    57
    Citations
    NaN
    KQI
    []