Experimental Investigation on the Behavior of Iron Powder-Reinforced Sand under Electromagnetic Field

2018 
Applications of soil improvement have proliferated in recent years. To date, we have limited studies on the quantitative analyses of the autoadaptive material and specifically to model its stress-strain relationship. This paper explored an autoadaptive material, iron-powdered Ottawa sand, which was temporarily solidified by applying an electromagnetic field. A series of compression triaxial tests were carried out with various relative densities of specimens (60% and 80%), in four electromagnetic fields (0 A, 0.5 A, 1 A, and 2 A) and under three confining pressures (103 kPa, 206 kPa, and 310 kPa). The test results indicate that the strength of specimens increased while initial stiffness and brittleness reduced by adding iron powder. Moreover, the strength of the specimens increased by increasing the magnitude of the applied electromagnetic field. The behavior of the iron-powdered sand was described by using a revised Duncan–Chang model. The revised model was evaluated by comparing the simulated results with the corresponding test data. The comparison showed that the revised model can better capture the nonlinear stress-strain behavior of the specimens. With the application of the revised Duncan–Chang model, the standard error of the estimate between the experimental and predicted results is lowered down to 0.39 from 4.7. Future research is geared towards practical applications for temporary solidification of soil.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    0
    Citations
    NaN
    KQI
    []