Numerical study of the hydrodynamics in a two-phase induction melter for nuclear waste treatment under various operating parameters

2020 
Abstract This article presents the numerical modeling of an in-can melter containing a metallic and a glass phase. Low-frequency electromagnetic induction is used to melt and stir the metal, and the latter heats and drags the glass phase. A careful choice of operating parameters is required to prevent the solidification of the glass, and to increase the performances of the process. Numerical modeling helps in avoiding experimental trial and error method and in studying the effect of the operating parameters on the hydrodynamics. The main difficulty for the numerical modeling comes from the deformation of the interfaces, produced by the magnetic pressure. First, a theoretical estimation of this phenomenon is performed and compared with numerical and experimental results. Then, numerical results are presented for different power inputs, AC frequencies, and quantities of glass. One of the phenomena obtained numerically is air entrainment at the triple point, creating bubbles in the glass.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    3
    Citations
    NaN
    KQI
    []