FPR2-based anti-inflammatory and anti-lipogenesis activities of novel meroterpenoid dimers from Ganoderma.

2021 
Abstract Four pairs of novel meroterpenoid dimers, (±)-applandimeric acids A-D (1–4) with an unprecedented spiro[furo[3,2–b]benzofuran-3,2′-indene] core were isolated from the fruiting bodies of Ganoderma applanatum. Their planar structures were unambiguously determined via extensive spectroscopic analysis. Their relative and absolute configurations were confirmed through calculated internuclear distance, coupling constant, 13C NMR with DP4 + analysis and electronic circular dichroism (ECD). Furthermore, the molecular docking-based method was used to evaluate their interaction with formyl peptide receptor 2 (FPR2) associated with inflammation. Interestingly, (±)-applandimeric acid D (4) can bond with FPR2 by some key hydrogen bonds. Furthermore, an in vitro bioassay verified that 4 can inhibit the expression of FPR2 with IC50 value of 7.93 μM. In addition, compared to the positive control LiCl (20 mM), 4 showed comparable anti-lipogenesis activity at the concentration of 20 μM. Meanwhile, 4 can suppress the protein levels of peroxisome proliferators-activated receptor-γ (PPAR-γ), CCAAT/enhancer-binding protein-β (C/EBP-β), adipocyte fatty acid-binding protein 4 (FABP4), and fatty acid synthase (FAS) through activating AMP-activated protein kinase (AMPK) signaling pathway. Thus, our findings indicate that compound 4 could be a lead compound to treat obesity and obesity-related diseases by inhibiting lipid accumulation in adipocyte and alleviating inflammation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    0
    Citations
    NaN
    KQI
    []