Electric-field driven photoluminescence probe of photoelectric conversion in InGaN-based photovoltaics

2018 
The spatial distribution of electric field in photovoltaic multiple quantum wells (MQWs) is extremely important to dictate the mutual competition of photoelectric conversion and optical transition. Here, electric-field-driven photoluminescence (PL) in both steady-state and transient-state has been utilized to directly investigate the internal photoelectric conversion processes in InGaN-based MQW photovoltaic cell. As applying the reversed external electric field, the compensation of the quantum confined stark effect (QCSE) in InGaN QW is beneficial to help the photoabsorbed minor carriers drift out from the localized states, whereas extremely weakening the PL radiative recombination. A directly driven force by the reversed external electric field decreases the transit time of photocarriers drifting in InGaN QW. And hence, the overall dynamic PL decay including both the slow and fast processes gradually speeds up from 19.2 ns at the open-circuit condition to 3.9 ns at a negative bias of −3 V. In particular, the slow PL decay lifetime declines more quickly than that of the fast one. It is the delocalization of photocarriers by electric-field drift that helps to further enhance the high-efficiency photoelectric conversion except for the tunneling transport in InGaN-based MQW photovoltaics. Therefore, it can be concluded that the electric-field PL probe may provide a direct method for evaluating the photoelectric conversion in multilayer quantum structures and related multijunction photovoltaic cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    7
    Citations
    NaN
    KQI
    []